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A novel statistical approach to the phase problem in X-ray

crystallography was introduced in a recent paper [Xu &

Hauptman (2004), Acta Cryst. A60, 153–157]. In this

approach, a new minimal function based on the statistical

distribution of structure-invariant values serves as the

foundation of an optimization procedure called statistical

Shake-and-Bake. Favorable application of this procedure to

Se-atom substructure determination depends on the choice of

the statistical interval over which the function is defined. The

effects of interval variation have been studied for 19 Se-atom

substructures ranging in size from five to 70 Se atoms in the

asymmetric unit and the results have shown an overall

improvement in success rate relative to traditional Shake-

and-Bake. Statistical Shake-and-Bake is being incorporated as

the default optimization procedure in newly distributed

versions of the SnB and BnP computer programs.
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1. Introduction

The difficulty in recovering phase information from

measurements of intensities alone is called the ‘phase

problem’. So far, successful procedures for performing this

have been based on the tangent formula (Karle & Hauptman,

1956), the minimal principle (Debaerdemaeker & Woolfson,

1983), maximum entropy (Bricogne, 1984) and minimum

charge (Elser, 1999). In the minimal principle method, the

phase problem is formulated in terms of constrained global

minimization. The problem is complex because of the exis-

tence of multiple local minima in the underlying optimization

formulations and the success of the minimal principle method

depends largely on the radius of convergence of the minimal

function. In the last few years, different types of minimal

functions, such as the exponential type (Hauptman et al., 1999)

and the sine-enhanced type (Xu et al., 2002), have been

proposed.

Shake-and-Bake (Weeks et al., 1994) is a multi-solution or

multi-trial direct-methods procedure that automatically and

repetitively alternates reciprocal-space phase refinement

(Shaking) with a complementary real-space density modifi-

cation to impose physical constraints (Baking). The phase-

refinement portion of the Shake-and-Bake cycle utilizes either

the tangent formula or the technique of parameter shift

(Bhuiya & Stanley, 1963) to reduce the value of a minimal

function. Shake-and-Bake is a powerful procedure capable of

providing ab initio solutions for structures containing as many

as 2000 independent non-H atoms (Frazão et al., 1999),

provided that accurate diffraction data have been measured to

a resolution of 1.2 Å or better. It has also yielded solutions for

heavy-atom protein substructures containing as many as 160



Se atoms (von Delft & Blundell, 2002) provided that anom-

alous difference data have been measured to �3.0 Å. The

Shake-and-Bake algorithm has been implemented in the

computer programs SnB (Miller et al., 1994; Weeks & Miller,

1999), BnP (Weeks et al., 2002) and SHELXD (Sheldrick,

1997, 1998).

1.1. Cosine minimal function

If H is an arbitrary reciprocal-lattice vector, then the phase

’H of the normalized structure factor EH is defined by

EH ¼ jEHj expði’HÞ: ð1Þ

For every pair of reciprocal-lattice vectors (H, K), the struc-

ture invariant (triplet) ’HK is defined by means of

’HK ¼ ’H þ ’K þ ’�H�K: ð2Þ

In the traditional probabilistic approach, the atomic position

vectors r of the atoms in a crystal are assumed to be random

variables uniformly and independently distributed in the unit

cell. Standard methods of mathematical probability are

applied to derive conditional probability distributions of the

structure invariants assuming that the magnitudes |E| are

known (Cochran, 1955). Traditional Shake-and-Bake imple-

ments the cosine minimal function (DeTitta et al., 1994),

Rð’Þ ¼
P
H;K

AHK

� ��1P
H;K

AHK cosð’HKÞ �
I1ðAHKÞ

I0ðAHKÞ

� �2

; ð3Þ

where AHK = 2N�1/2|EHEKEH+K|, N is the number of non-H

atoms in the unit cell and Im, m = 0, 1, are modified Bessel

functions of order 0 and 1. The cosine minimal function

measures the mean-square difference between the values of

the cosine structure invariants, cos(’HK), for a set of trial

phases and their conditional expected values, I1(AHK)/

I0(AHK), derived from probability theory.

1.2. Statistical minimal function

In a recent paper (Xu & Hauptman, 2004), a novel statis-

tical approach to the phase problem in X-ray crystallography

was introduced. This approach takes full advantage of the

statistical properties of the structure invariants to construct a

novel statistical maximal/minimal function. Let I = [�r, r] �

[��, �] be an arbitrary statistical interval, NI the number of

triplets whose values are in I and NT the total number of

triplets. The statistical maximal function is then defined by

Mð’Þ ¼ NI=NT ð4Þ

and the statistical minimal function is defined by means of

mð’Þ ¼ 1� ðNI=NTÞ: ð5Þ

Note that NI is an implicit function of all selected phases.

When an individual phase value changes, all triplet values

associated with this phase will change and therefore the value

of NI will also change. It is obvious that the values of the

statistical minimal function depend on the choice of the

statistical interval I = [�r, r]. It was anticipated (and later

confirmed experimentally) that with a proper choice of the

statistical interval the statistical minimal function reaches its

constrained global minimum when all phases are equal to their

true values for any choice of origin and enantiomorph

(statistical minimal principle). The initial applications of

statistical Shake-and-Bake, a modification of traditional

Shake-and-Bake obtained by replacing the cosine minimal

function (3) by the statistical minimal function (5), have shown

that the statistical approach to the phase problem is a simple,

reliable, less computationally intensive and more efficient

procedure for the determination of both centrosymmetric and

non-centrosymmetric structures, including heavy-atom

substructures (Xu & Hauptman, 2004). Owing to the

successful direct-methods applications that utilize anomalous

dispersion measurements or multiple diffraction patterns

(SIR, SAS and MAD) to determine heavy-atom substructures,

we focus our attention on optimizing statistical Shake-and-

Bake for substructure determination.

2. Materials and methods

Both traditional Shake-and-Bake and statistical Shake-and-

Bake were applied to 19 known Se-atom substructures ranging

in size from five to 70 Se atoms in the asymmetric unit using a

modified version of the computer program SnB (Weeks &

Miller, 1999). Basic facts regarding the structures, such as the

PDB code, number of Se atoms in the asymmetric unit, space

group and data resolution, are listed in Table 1. Three-wave-

length MAD (multi-wavelength anomalous dispersion) data

were available for each structure and in each case SnB

applications designed to locate the positions of the substruc-

ture atoms were made using both the peak-wavelength

anomalous differences (PKano data) and the isomorphous

dispersive differences between the inflection point and high-

energy remote wavelengths (IPiso data). The normalized

difference structure-factor magnitudes, |E�|, were calculated

with a series of programs from Blessing’s data-reduction and

error-analysis routines (DREAR): LEVY and EVAL for

structure-factor normalization (Blessing et al., 1996),

LOCSCL for local scaling of the SIR and SAS magnitudes

(Blessing, 1997) and DIFFE for computing the actual SIR and

SAS difference magnitudes (Blessing & Smith, 1999).

A sample of 1000 randomly positioned N-atom trial struc-

tures (where N is the number of independent Se atoms in the

asymmetric unit) was generated for each substructure and the

dual-space SnB refinement procedure was applied to each.

The default values of the important size-dependent SnB

parameters (including the numbers of phases, triplets, SnB

cycles and peaks selected) that were used in these experiments

are summarized in Table 2. These default values are the results

of previous analyses of traditional Shake-and-Bake applica-

tions to Se-atom substructures (Howell et al., 2000; Xu et al.,

2002) and they were adopted for statistical Shake-and-Bake as

well.

Shake-and-Bake belongs to the class of phasing methods

known as ‘multi-trial’ or ‘multi-solution’ procedures (Germain

& Woolfson, 1968). In this study, the comparison of different

Shake-and-Bake protocols is based on success rate (i.e. the
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percentage of trial structures that converge to solution). When

performing postmortem studies using data for previously

known structures, a trial structure subjected to the Shake-and-

Bake procedure is counted as a solution if there is a close

match between the peak positions produced by Shake-and-

Bake and the true atomic positions for some choice of origin

and enantiomorph. Of course, in actual applications to

unknown structures potential solutions are identified on the

basis of final minimal function values. All experiments were

conducted on a network of SGI R10000 workstations at the

Hauptman–Woodward Medical Research Institute.

The Shake-and-Bake algorithm utilizes the following para-

meter-shift procedure to reduce the value of the targeted

minimal function. Firstly, the phases are sorted in decreasing

order with respect to the values of the associated |E| values

and initial values for each phase are calculated based on a trial

structure having randomly positioned atoms. Beginning with

the phase having the largest |E| value, each phase (’H) is

refined in turn. The values of the minimal function are eval-

uated four times using phase values of ’H, ’H � S� and

’H � 180�, where S is a predetermined phase shift (shift size).

The minimum of these four values is then found and the phase

’H is updated accordingly. When consideration of a particular

phase is complete, parameter shift proceeds to the next phase

using refined values immediately in the subsequent refinement

of other phases. The notation PS(S�, k) is used to denote a

parameter-shift procedure using shift size S� and k iterations

(passes through the phase set) of phase refinement per Shake-

and-Bake cycle. Based on extensive tests involving a variety of

heavy-atom substructures in various space groups, PS(90�, 3)

was found to be optimal for heavy-atom substructure deter-

minations (Xu et al., 2002) and was used throughout this

investigation.

3. Results

3.1. Optimizing the statistical interval I = [�r, r]

The statistical maximal function is defined as the fraction of

triplets whose values lie in the statistical interval I and the

value of the statistical minimal function is obtained by

subtracting this value from unity. When the statistical interval

I changes, so does the minimal function value. The main goal

of this study was to determine the optimal statistical interval

for statistical Shake-and-Bake. In order to examine the effects

of statistical interval variation, a series of intervals I = [�r, r]

with r = 60, 65, 70, . . . , 110� and the corresponding success

rates obtained from statistical SnB experiments are listed in

Table 3 for PKano difference data sets and in Table 4 for IPiso

difference data sets. For each row in these tables, the three

largest success rates are listed as bold numbers. The following

can be observed.

(i) The statistical interval is a crucial parameter, especially

for large substructures.

(ii) There is a correlation between the optimal statistical

interval and the number of Se sites in the asymmetric unit. The

size of the optimal interval increases as the number of Se sites
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Table 2
Default values of SnB experimental parameters.

N is the number of Se atoms in the asymmetric unit.

Parameters N � 10 N > 10

Phases 300 30N
Triplets 3000 300N
Peaks N N
Cycles 20 2N

Table 1
Selenium substructure data sets used in this investigation.

Selenium sites Resolution (Å)

Structure
ID

PDB
code Theoretical† Actual‡

Space
group Original§ Actual} Reference

PURE 1qcz 5 4 I422 1.50 3.00 Mathews et al. (1999)
AK 1bx4 8 7 P21212 2.25 3.00 Mathews et al. (1998)
MTAP 1cb0 9 8 P321 2.20 3.00 Appleby et al. (1999)
CBAL 1t5h 10 10 P3221 2.50 3.00 Gulick et al. (2004)
GAR 1gso 13 13 P212121 2.22 3.00 Wang et al. (1998)
THID 1jxh 14 14 P41212 2.30 3.00 Cheng et al. (2002)
OMPDC 1dbt 21 19 P21212 2.49 3.00 Appleby et al. (2000)
SAMDC 1jen 24 22 P21 2.25 3.00 Ekstrom et al. (1999)
MMEPI 1jc4 28 24 P21 2.00 3.00 McCarthy et al. (2001)
AIRS 1cli 28 28 P212121 3.00 3.00 Li et al. (1999)
ADOHCY 1a7a 32 30 C222 2.80 3.00 Turner et al. (1998)
E1 1l8a 42 40 P21 2.60 3.00 Arjunan et al. (2002)
MUTS 1e3m 48 45 P212121 3.00 3.00 Lamers et al. (2000)
PHI6 1hi8 50 50 P32 2.80 3.00 Keitel et al. (1997)
HYDAN 1gkp 54 54 C2221 2.50 3.00 Abendroth et al. (2002)
AEPT 1m32 66 66 P21 2.55 3.00 Chen et al. (2002)
HMGR 1dq8 68 60 P21 2.33 3.00 Istvan et al. (2000)
TRYP 1e2y 70 60 P21 3.20 3.20 Alphey et al. (2000)
AGME 1eq2 70 70 P21 2.91 3.00 Deacon et al. (2000)

† Potential sites based on the amino-acid sequence. ‡ Number of sites reported in the published protein structure. § Measured data resolution. } Truncated data resolution for
substructure determination.



increases. This result may be correlated with a sharp distri-

bution of the structure invariants for small substructures and a

flat distribution of the structure invariants for large

substructures.

(iii) The pattern of bold numbers in Table 3 (for PKano) is

similar to that in Table 4 (for IPiso). Thus, both types of

difference data have similar optimal statistical intervals.

(iv) To solve medium or large substructures (�30 Se atoms),

the statistical Shake-and-Bake procedure requires a large

statistical interval I = [�r, r] with r � 80�.

(v) Two PKano data sets (HYDAN and TRYP) and four IPiso

data sets (SAMDC, MMEPI, PHI6 and AGME) do not yield

solutions using any of the statistical intervals that were tested.

Nevertheless, all 19 substructures are solvable with a combi-

nation of PKano and IPiso data sets.

3.2. Strategy for choosing default statistical
interval

It can be observed from Tables 3 and 4

that the statistical interval I = [�90, 90�]

yields optimal or near-optimal success rates

for medium and large substructures. This

interval is not optimal for small substruc-

tures; however, the success rates for such

substructures are relatively high anyway.

Therefore, a conservative strategy is to

choose I = [�90, 90�] as the default statis-

tical interval. Based on the results, an

aggressive strategy would be to consider the

length of the statistical interval, r, as a

function of the number of Se atoms, N, in

the asymmetric unit of the crystal. From the

pattern of bold numbers in Tables 3 and 4,

one could assume that r ¼ a lnðNÞ þ b,

where a and b are parameters to be deter-

mined. After applying least squares to the

data (N, r) that produced the bold success

rates in Tables 3 and 4, the relationship

r ¼ 9:14 lnðNÞ þ 55:31� ð6Þ

is obtained. The empirical formula (6) can

be used to calculate the aggressive statistical

interval for any targeted substructure

provided that the size of the substructure is

known.

3.3. Comparison of traditional and
statistical Shake-and-Bake

The success rates obtained using tradi-

tional Shake-and-Bake as well as statistical

Shake-and-Bake with either conservative or

aggressive statistical intervals are listed in

Table 5 under the headings COS, STAT(C)

and STAT(A), respectively, for the PKano

and IPiso difference data sets of the 19 Se-

atom substructures. Success rates are

reported in the form of x� �(x), where �(x)

is the standard deviation calculated by Bernoulli’s distribu-

tion, �(x) = [nx(1 � x)]1/2, with n being the number of trials

and x being the success rate expressed as a fraction. When

comparing two success rates (x and y) obtained from two

different procedures, y is statistically higher than x if y � x +

2�(|y � x|), where �(|y � x|) = [�2(x) + �2(y)]1/2; y is statisti-

cally lower than x if y � x � 2�(|y � x|); otherwise y is

statistically equivalent to x. When compared with traditional

Shake-and-Bake using 38 difference data sets, STAT(C)

yielded 11 statistically higher and one statistically lower

success rates, while STAT(A) yielded 19 statistically higher

and one statistically lower success rates.

These results clearly show that statistical Shake-and-Bake

with either an aggressive or a conservative statistical interval

outperforms traditional Shake-and-Bake for Se-atom
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Table 3
Success rates (%) obtained for statistical Shake-and-Bake using PKano data sets for 17 Se-atom
substructures.

Two data sets (HYDAN and TRYP) yielded no solution.

Statistical interval I = [�r, r]

Structure
ID

Se
sites r = 60� 65� 70� 75� 80� 85� 90� 95� 100� 105� 110�

PURE 5 30.1 29.1 24.2 19.1 17.7 15.3 13.5 12.5 11.4 10.4 9.2
AK 8 13.1 20.2 18.2 16.1 12.4 12.0 11.3 10.3 9.5 9.4 7.3
MTAP 9 0.0 0.1 1.9 5.6 5.4 4.0 4.7 4.1 2.4 2.6 1.8
CBAL 10 0.0 0.5 1.6 6.4 4.2 4.7 4.2 3.7 2.3 2.4 1.6
GAR 13 0.0 0.0 0.0 0.02 0.10 0.12 0.10 0.16 0.04 0.06 0.02
THID 14 0.0 0.0 0.0 0.18 1.20 0.84 0.82 0.50 0.70 0.30 0.0
OMPDC 21 0.0 0.0 0.1 7.1 9.7 6.9 5.1 4.8 4.3 3.1 2.1
SAMDC 24 0.0 0.8 8.7 12.5 12.3 14.2 12.0 11.4 10.9 11.1 8.2
MMEPI 28 0.2 10.0 26.6 28.8 37.3 30.3 28.8 27.8 26.8 25.2 26.0
AIRS 28 0.0 0.0 0.0 0.4 4.4 4.4 3.9 3.9 4.5 3.7 2.6
ADOHCY 32 0.0 0.0 0.0 0.1 7.7 5.5 4.5 4.2 3.7 2.7 3.5
E1 42 0.0 0.0 0.0 2.4 4.1 2.9 3.0 2.3 1.9 0.7 0.7
MUTS 48 0.0 0.0 0.0 0.0 9.9 6.6 6.8 5.5 3.1 2.9 2.6
PHI6 50 0.0 0.0 0.0 0.0 10.8 28.2 26.6 20.2 16.8 14.2 13.1
AEPT 66 0.0 0.0 0.0 0.0 0.3 2.5 4.5 4.3 2.7 1.4 1.7
HMGR 68 0.0 0.0 0.0 4.9 21.5 24.2 24.2 21.2 20.1 11.3 12.9
AGME 70 0.0 0.0 0.0 0.0 1.0 1.9 3.4 3.0 3.5 2.0 1.3

Table 4
Success rates (%) obtained for statistical Shake-and-Bake using IPiso data sets for 15 Se-atom
substructures.

Four data sets (SAMDC, MMEPI, PHI6 and AGME) yielded no solution.

Statistical interval I = [�r, r]

Structure
ID

Se
sites r = 60� 65� 70� 75� 80� 85� 90� 95� 100� 105� 110�

PURE 5 15.5 16.2 16.3 13.1 11.6 11.2 11.8 10.8 10.5 9.6 7.6
AK 8 16.5 27.3 26.6 23.3 22.8 22.2 19.9 14.9 13.2 13.1 9.9
MTAP 9 2.1 4.0 7.6 8.9 7.6 6.7 6.5 4.5 4.6 4.4 3.5
CBAL 10 2.0 5.8 9.4 10.2 7.3 6.8 6.3 6.5 6.1 4.1 3.9
GAR 13 7.4 12.5 12.6 13.5 12.8 12.6 13.8 11.0 11.5 8.0 6.2
THID 14 9.5 22.1 20.1 15.4 12.7 12.4 11.5 12.1 11.0 11.0 10.3
OMPDC 21 0.7 8.1 9.1 8.3 8.6 8.7 8.2 6.8 5.4 4.1 3.4
AIRS 28 0.0 0.0 0.0 1.4 4.5 4.0 4.4 3.5 4.5 2.7 2.7
ADOHCY 32 0.0 0.0 0.0 0.10 0.70 1.06 1.52 1.78 1.68 1.64 1.52
E1 42 0.0 0.0 0.0 9.3 12.6 11.8 13.7 11.7 10.1 6.9 3.6
MUTS 48 0.5 1.9 4.6 7.1 7.1 6.2 7.0 11.2 11.2 9.6 7.8
HYDAN 54 0.0 0.0 0.0 0.0 1.6 1.8 2.2 1.7 1.7 1.0 1.0
AEPT 66 0.0 0.0 0.0 0.3 18.5 18.7 28.1 23.0 20.1 18.3 14.2
HMGR 68 0.0 0.0 0.0 8.1 8.3 8.7 10.8 10.5 10.6 7.5 5.7
TRYP 70 0.0 0.0 0.8 6.5 6.8 8.8 10.2 11.3 10.7 8.8 9.2



substructure determination. The advantage of using a

conservative statistical interval is that one fixed interval can be

used to determine substructures of any size with a reasonably

high success rates. The disadvantage is the loss of higher

success rates for small and medium substructures (5–35 Se

atoms). The data in Tables 3 and 4 suggest that a large

statistical interval, I = [�r, r] with r > 100�, may be needed to

determine very large substructures (�100 atoms). On the

other hand, the advantage of using an aggressive statistical

interval is the potential of yielding maximal success rates for

small substructures.

3.4. Effects of measurement errors

As shown in Table 5, large differences between the success

rates for PKano and IPiso difference data were observed for

seven test substructures (GAR, SAMDC, MMEPI, PHI6,

HYDAN, TRYP and AGME). To investigate the possible

causes of these differences, the effects of data accuracy were

studied for PKano from GAR and IPiso from MMEPI by

applying statistical Shake-and-Bake to error-free data gener-

ated using the program EGEN (R. Blessing, personal

communication) and the known Se atomic coordinates. In

both cases, the results (Table 6) show that the success rates are

much higher for the error-free data than the corresponding

experimental data, thereby indicating that experimental error

is in fact the cause of the low success rates. It should be noted

that the same number of reflections (30N, where N is the

number of independent Se atoms) were involved as were used

in the corresponding application to real data. However, the

identities (Miller indices) of the reflections were different

because the Shake-and-Bake calculations were carried out

with either the largest experimental or error-free normalized

difference magnitudes.

4. Conclusion and discussion

The results described above confirm that statistical Shake-and-

Bake is more powerful than traditional Shake-and-Bake for

the determination of Se-atom substructures. Consequently, the

statistical Shake-and-Bake procedure has been implemented

as the default method in the latest versions of the computer

programs SnB and BnP. These programs can be downloaded

from the websites http://www.hwi.buffalo.edu/SnB/ and http://

www.hwi.buffalo.edu/BnP/, respectively.

The statistical Shake-and-Bake adopts the default SnB

parameters for routine applications. However, some changes

in the default values of SnB parameters, such as the numbers

of reflections and invariants, the minimal |E|/�(|E|) and the

number of cycles, may help in solving non-routine and difficult

structures (Wang & Ealick, 2003). The changes in the default

SnB parameters may influence the choice of statistical

interval.

In the minimal principle method, the phase problem is

formulated as a problem in constrained global minimization.
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Table 5
Comparison of success rates (%) obtained from traditional and statistical Shake-and-Bake using PKano and IPiso data sets for 19 Se-atom substructures.

COS represents traditional Shake-and-Bake, whereas STAT(C) and STAT(A) represent statistical Shake-and-Bake using conservative or aggressive statistical
intervals, respectively.

PKano IPiso

Structure ID COS STAT(C) STAT(A) COS STAT(C) STAT(A)

PURE 11.4 � 1.01 13.5 � 1.08 29.8 � 1.45†‡ 10.0 � 0.95 11.8 � 1.02 15.7 � 1.15†
AK 10.2 � 0.95 11.3 � 1.00 17.0 � 1.19†‡ 9.0 � 0.90 19.9 � 1.26§ 26.1 � 1.39†‡
MTAP 3.4 � 0.57 4.7 � 0.67 4.3 � 0.64 6.1 � 0.76 6.5 � 0.78 9.5 � 0.93†‡
CBAL 3.2 � 0.56 4.2 � 0.63 4.1 � 0.63 6.3 � 0.77 6.3 � 0.77 9.1 � 0.91†‡
GAR 0.0 0.1 � 0.10 0.0 10.6 � 0.97 13.9 � 1.09 11.9 � 1.02
THID 0.3 � 0.17 1.0 � 0.31‡ 0.1 � 0.10 11.6 � 1.01 11.5 � 1.01 14.8 � 1.12†‡
OMPDC 5.0 � 0.69 5.1 � 0.70 9.2 � 0.91†‡ 6.8 � 0.80 8.2 � 0.87 8.4 � 0.88
SAMDC 10.4 � 0.97 12.0 � 1.03 12.0 � 1.03 0.0 0.0 0.0
MMEPI 24.6 � 1.36 28.8 � 1.43§ 31.3 � 1.47† 0.3 � 0.17 0.0 0.0
AIRS 2.4 � 0.48 3.9 � 0.61 4.9 � 0.68† 0.8 � 0.28 4.4 � 0.65§ 4.6 � 0.66†
ADOHCY 3.3 � 0.56 4.5 � 0.65 6.1 � 0.76† 2.0 � 0.44 1.6 � 0.40 1.1 � 0.33
E1 1.2 � 0.34 3.0 � 0.54§ 3.4 � 0.57† 9.9 � 0.94 13.7 � 1.09§ 13.5 � 1.08†
MUTS 2.9 � 0.53 6.8 � 0.80§ 5.0 � 0.69† 11.1 � 0.99†§ 7.0 � 0.81 7.7 � 0.84
PHI6 13.3 � 1.07 26.6 � 1.40§ 27.1 � 1.41† 0.0 0.0 0.0
HYDAN 0.0 0.0 0.0 1.1 � 0.33 2.2 � 0.46 2.1 � 0.45
AEPT 2.6 � 0.50 4.5 � 0.66‡§ 2.7 � 0.51 15.8 � 1.15 28.1 � 1.42‡§ 22.4 � 1.32†
HMGR 14.6 � 1.12 24.2 � 1.35§ 23.0 � 1.33† 7.0 � 0.81 10.8 � 0.98§ 12.6 � 1.05†
TRYP 0.0 0.0 0.0 13.0 � 1.06 10.2 � 0.96 10.6 � 0.97
AGME 2.1 � 0.45 3.4 � 0.57 2.9 � 0.53 0.0 0.0 0.0

† There is a statistically significant difference in success rates between COS and STAT(A). ‡ There is a statistically significant difference in success rates between STAT(A) and
STAT(C). § There is a statistically significant difference in success rates between COS and STAT(C).

Table 6
Comparison of success rates (%) for experimental and error-free data.

Data GAR, PKano MMEPI, IPiso

Experimental 0.1 0.0
Error-free 11.8 23.7



The ‘minimal principle’, which asserts that a certain objective

function is minimized only by the crystal structure, is

employed to solve the phase problem. The probabilistic

formulation of the cosine minimal function (3) is a nonconvex

nonlinear optimization problem. In the special case of

centrosymmetric structures, the probabilistic minimal function

can be reformulated into an integer linear programming

problem (Vaia & Sahinidis, 2003). This formulation is solvable

by well established combinatorial optimization techniques

that are guaranteed to provide the global optimum in a finite

number of steps without explicit enumeration of all possible

combinations of phases. This approach yields a fast and reli-

able method that resolves the crystallographic phase problem

for the case of centrosymmetric structures. However, the

probabilistic minimal function can not be reformulated as an

integer linear programming problem for non-centrosymmetric

structures. With the introduction of the statistical approach,

the phase problem of non-centrosymmetric structures can now

be reformulated into an integer linear programming problem,

and experiments designed to test this formulation are now

under way.
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